Базовые сведения об иррациональных числах

Б

Необходимые промежуточные понятия и определения

Дроби достаточно хороши для любой практической задачи на деление, и некоторое время древние греки были убеждены, что дроби описывают все во Вселенной.
Затем один из них разобрал следствия теоремы Пифагора и задался вопросом о том, как диагональ квадрата относится к его стороне.
Из ответа на этот вопрос следовало, что некоторые задачи решить с помощью дробей невозможно.
Так родились иррациональные числа. Вместе рациональные и иррациональные числа образуют множество действительных чисел.

И. Стюарт

Прежде чем детально объяснить читателю какие числа являются иррациональными и каковы их свойства, потребуется напомнить некоторые базовые понятия.

Базовые понятия

Натуральными (от латинского “naturalis” – “естественный”) называют числа, возникшие из естественной нумерации предметов при счёте – например такие как 1, 2, 3 и так далее. Их последовательность, расположенная в порядке возрастания, образует так называемый натуральный ряд. Существует два конкурентных подхода к определению ряда натуральных чисел: в отечественной математической литературе он традиционно начинается с единицы, в зарубежной – с нуля.

Целыми называют числа, образованные расширением множества натуральных чисел посредством добавления отрицательных чисел и нуля: за счёт такого объединения в общем случае из меньшего числа можно вычесть большее, что уравнивает операции вычитания и сложения, образуя “кольцо целых чисел“.

Рациональными (от латинского “ratio” – “дробь”, “отношение”, часто в данном контексте неправильно толкуемое в популярных статьях как определение “разумный” либо аналогичное) числами называют числа вида m/n, где числитель m представлен целым числом, а знаменатель n – натуральным. Иначе говоря, рациональными являются те числа, которые возможно точно представить в виде обыкновенной дроби.

Пояснение-напоминание о дробях

Прежде чем дать определение какие числа называются иррациональными, потребуется напомнить читателю некоторые сведения о дробях и формах их представления. Общепринятыми для записи дробей являются два формата: обыкновенные (вида m/n) и десятичные (вида 0,12345). В случае десятичных дробей дополнительно вводится понятие периодичности: например, дробь 1/7 в десятичном виде может быть представлена как 0,(142857), где в скобках заключён бесконечно повторяющийся фрагмент – так называемый период дроби.

Определение иррациональных чисел

Итак, иррациональные числа – это такие числа, которые невозможно точно отобразить посредством обыкновенной дроби, но возможно представить в виде бесконечной непериодической десятичной дроби. С точки зрения иррациональности в математике, множество иррациональных чисел является разностью между множеством чисел вещественных и множеством чисел рациональных.

С понятием иррационального числа близко столкнулись ещё древние учёные: так, индийский математик Манава обнаружил, что диагональ условного квадрата с единичной стороной имеет размерность √2, что невозможно выразить явно доступными в то время средствами. Другим известным примером является так называемая “постоянная Архимеда” – число Пи (отношение диаметра окружности к её длине). Важно понимать, что для инженерных расчётов возможно использование его рациональных приближений различной степени точности в виде дробей 22⁄7, 179⁄57, 223⁄71 и так далее, но ни одна из этих дробей по определению не является точным представлением числа Пи.

Некоторые примеры рациональных и иррациональных чисел:

  рациональные – дроби типа 1/3 или 0,(142857) и им подобные;

  иррациональные – квадратные корни √2, √3 и √5, основание натуральных логарифмов e, число Пи и так далее.

Легко заметить, что отрицательные иррациональные числа отличаются от положительных лишь знаком и располагаются на числовой прямой симметрично относительно начала координат (нуля).

Общие признаки рациональных выражений/чисел

Вопрос “как определить иррациональные числа” не имеет однозначного ответа: если имеется некое математическое выражение для числа, то для выяснения его рациональности/иррациональности потребуется произвести детальное исследование. Резко сократить время на поиск требуемого доказательства возможно, если пойти от противного: убрать из рассмотрения числа, не являющиеся иррациональными. По определению, к ним не могут принадлежать:

  все целые, натуральные и рациональные числа;

обыкновенные дроби и смешанные числа;

  бесконечные и конечные периодические десятичные дроби.

Результат математических операций (сложение, умножение, вычитание и деление) над рациональными числами также не является иррациональным числом. Если в исследуемое выражение входит единственное иррациональное число, то результат также будет иррациональным – однако для случая двух и более вхождений это, вообще говоря, неверно.

Некоторые признаки иррациональных выражений/чисел

Вот некоторые общеупотребительные признаки иррациональности исследуемого выражения/числа:

корень k-ой степени из целого числа будет рациональным только тогда, когда подкоренное выражение является k-ой степенью иного целого числа;

в случае использования обычных логарифмов иррациональность выражения непременно требует доказательства (здесь удобнее всего пользоваться методом “от противного”);

поскольку основанием натуральных логарифмов является иррациональное число e, то натуральный логарифм любого положительного числа также будет иррациональным;

иррациональное число e в любой рациональной (но отличной от нуля!) степени даёт иррациональный результат;

 число Пи в любой целой и отличной от нуля степени даёт иррациональный результат;

все основные тригонометрические функции (такие как cos(a), sin(a), tg(a) и ctg(a)) при использовании отличного от нуля рационального аргумента в качестве результата дают иррациональное число.

Интересные факты об иррациональных числах

Как известно Пифагор возвёл числа во главе культа, основным постулатом которого являлось то, что всё во вселенной являлось целочисленном выражении. Его учение собрало последователей в тайное сообщество математиков – пифагорейцев, которое возглавил сам Пифагор. Один из последователей Пифагора – Философ-пифагореец Гиппас высчитал, что в случае, если стороны треугольника равны одной мере длины, то протяженность гипотенузы составит корень из числа 2 ( v2). Ответ полученный при извлечении квадратного корня является целым числом, а значит не имеет точного целочисленного значения, т.е. является ни чем иным как иррациональным числом. Интересный факт в том, что Пифагор, узнав что Гипас ставит под сомнение его учения о целочисленности природы, хоть и не специально, пригласил его на рыбалку, а на берег возвратился уже в одиночку… Гипаса после этой рыбалки никто уже больше не видел.

Выводы

Все вышеперечисленные признаки являются плодом строгого математического доказательства, а иные конкретные частные случаи требуют дополнительного исследования – то есть не существует всеобщих, однозначных и очевидных признаков иррациональности. Например, возведение в иррациональную степень иррационального числа совершенно не обязательно сопровождается получением иррационального результата. Кроме того, имеются частные случаи, когда вычитание, сложение, деление и умножение иррациональных чисел в итоге даёт рациональный результат. В общем случае для доказательства рациональности/иррациональности применяется специальная доказательная база, строящаяся на теории алгебраических и трансцендентных чисел. Особо отметим, что для целого ряда случаев рациональность либо иррациональность выражения/результата не доказана до сих пор.

Об авторе

Написал Master Fibo